Problems on x-rays

- Q1. An electron is accelerated in an x-ray tube by a voltage of 40 kV. What is its energy (a) in electron volts (b) in joules ? [Given $e = 1.6 \times 10^{-19} C$]
- Q2. The shortest wavelength produced in an x-ray tube is 3.3×10^{-11} m. What is the potential difference across the tube? [$h = 6.6 \times 10^{-34}$ Js , $c = 3 \times 10^8$ ms⁻¹, $e = 1.6 \times 10^{-19}$ C]
- Q3. An x-ray tube operates at a potential difference of 30 kV. Calculate the wavelength of x-rays produced. [$h = 6.6 \times 10^{-34} \text{ Js}$, $c = 3 \times 10^8 \text{ ms}^{-1}$, $e = 1.6 \times 10^{-19} \text{ C}$]
- Q4. Electrons strike an anode with a total energy of 2.4 J per sec. 99.5% of this energy is turned into heat. The remaining energy is released as x-rays of wavelength 3.3 pm. How many photons of x-radiation are emitted per sec? [$h = 6.6 \times 10^{-34}$, $c = 3 \times 10^8 \text{ ms}^{-1}$ $e = 1.6 \times 10^{-19} \text{ C}$]
- Q5. An x-ray tube operates at 50 kV and draws a current of 4 mA. Calculate (a) the number of electrons travelling through the tube per second and (b) the minimum wavelength of the x-rays. $[h = 6.6 \times 10^{-34} \text{ Js}, c = 3 \times 10^8 \text{ ms}^{-1}, e = 1.6 \times 10^{-19} \text{ C}]$

Answers to exercises

- 1. (a) 40 keV (b) 6.4 x 10^{-15} J
- 2. 37.5 kV
- 3. 41.25 pm (pico meters)
- 4. 2×10^{11} electrons
- 5. (a) 2.5×10^{16} electrons
 - (b) 25 pm (pico metres)